#### BIBLlOGKAPHY

- [1] *E. Heilbronner,* Israel J. of Chem., in print.
- [2] *P. Bischof, J. A. Hashmall, E. Heilbroianer* & *V. Hornung,* Helv. 52, 1745 (1969).
- 131 *H. Hoffman%, E. Heilbronner* & X. *Gleiter,* J. Amcr. chem. Soc. 92, 706 (1970).
- [4] R. *Hoffmann,* Accounts of chem. Research *4,* 1 (1971).
- [5] *E. Heilbronner,* XXIIIrd International Congress of Pure and Applied Chemistry, Vol. 7, Butterworth, London 1971, **p.** 9.
- [6] *H. D. Martin* & *D. Forster,* Angew. Chem. *84,* 65 (1972).
- [7] *1'. Koopmans,* Physica *1,* 104 (1933).
- [8] *P. Bischof, J.* .4. *Hashmall, E. Heilbronner* & *V. Hornung,* Tetrahedron Letters *1970,* 1033; *P. Bischof, H. Gleiter, E. Heilbronner, V. Hornung* & *G. Schroder,* Helv. *53,* 1645 (1970); *E. Haselbach, E. Heilbronner & G. Schröder, Helv. 54, 153 (1971).*
- r.91 *R. W. HoJCJnzann, R. Schiittler, W. Schafev* & A. *Schwezg,* Angcw. Chem., *84,* 533 (1972).
- [lo] *I?. W. Kiser,* 'Tables of Ionization Potentials', US Atomic Energy Commission, Washington D.C., 1960 ; *W. J. Wedenejew, L. W. Gurwitsch, W. H. Kondraljew, W. A. Madwedew* & *E. L. Frankewitsch,* 'Energien chemischer Bindungcn, Ionisationspotentiale und Elektronenaffinitaten', Deutscher Verlag fur Grundstoffindustric, Leipzig 1971.
- [ll] *W. Bremser, H.* **2'.** *Grunder, E. Heilbronner* & *E. Vogel,* Helv. *50,* 84 (1967).
- [12] *D. Chadwick, D. C. Frost* & *L. Weiler,* J. Amer. chem. Soc. 93, 4962 (1971).
- [13] *D. W. Turner, C. Baker, A. D. Baker* & *C. R. Brzmdle,* 'Molecular Photoelectron Spectroscopy', Wiley-Interscience, London 1971; *D. Chadwick, D. C. Frost* & *L. Weiler,* J. Amer. chcm. SOC. 93, 4320 (1971).
- [14j *H. Tanida, T. Tsuji* & *T. Irie,* J. Amer. cheni. SOC. *89,* 1953 (1967); *M.* A. *Battiste, C. L. Dcyrup, R. E. Pincock* & *J. Haywood-Farmer, ibid. 89.* 1954 (1967) ; *R. Hoffmann,* Tetrahedron Letters *1965,* 3819.
- [151 *P. Bischof, E. Heilbrontier, H. Prinzbach* & *H. D. Martin,* Helv. *54,* 1072 (1971).
- [16] A. *D. Walsh, Nature 159, 167, 712 (1947)*; Trans. Farad. Soc. 45, 179 (1949).

# **148. Reactions of Group 3 Metal Alkyls in the Gas Phase.**  Part 10<sup>1</sup>): The Addition of Olefins to the Monomeric Diisobutyl**aluminiumhydride**

# by **Kurt W. Egger**

Monsanto Research S. **A,,** Eggbdhlstrasse *36,* 8050 Zurich

#### (22 IT' 72)

*Summary*. The relative rate constants for adding ethylene  $(k_1)$ , propylene  $(k_2)$  and 2-methylbut-1-cne **(k3)** to gaseous diisobutylaluminium hydridc produced *in situ* from AltBu, have been measured in the temperature range 104-169" in the presence of an excess **of** equimolar olefin mixtures. The following temperature dependences of the relative rate constants have been obtained:

 $\log(k_1/k_2) = 0.6 - 0.8/4.58 \times 10^{-3} \text{ T}({}^{\circ}\text{K})$  $log (k_1/k_2) = 1.2 - 2.2/4.58 \times 10^{-3} T(^{\circ}K)$ 

Two compensating factors determine the rate of addition of olefins to Al-H and Al-C bonds: (a) the steric effect, reflected in the differences in the preexponential factors and (b) the polar effects, reflected in differences in the activation energies.

In the addition of olefins to R<sub>a</sub>Al-H bonds in contrast to R<sub>a</sub>Al-C bonds, the steric effect (a) does not always overrule the opposing energy effect. At temperatures below  $125^{\circ}$  e.g., isobutene

Part 9: *K. W'.Egger,* J. chem. SOC. Faraday I, *68,* 1017 (1972)

adds slightly faster to HAl<sup>t</sup>Bu<sub>2</sub> than ethylene. These results are in perfect agreement with expectations based on **a** reaction mechanism involving a tight asymmetric quadrupolar 4-centre transition state similar to that postulated earlier for the addition of olefins to A1-C bonds.

**Introduction.** - A series of thermochemical kinetic studies involving aluminium trialkyls and olefins in the gas phase have been carried out in this laboratory in the last two years in an attempt to arrive at a reasonable interpretation of the detailed reaction mechanisms.

Olefin oligomerizations, catalyzed by gaseous or liquid  $AlR<sub>a</sub>$  species (where R stands for an alkyl group) can be represented with the following general reaction mechanism :

$$
AIR_3 \xrightarrow{-a} HAIR_2 + \text{olefin} \tag{A}
$$

$$
AlR_3 + \text{olefin} \xrightarrow{\text{b}} R_2 AlR'
$$
 (B)

For reaction system A, which is an integral part of the overall oligomerization mechanism, activation parameters for the unimolecular eliminations of olefins from the following trialkylaluminium compounds have been obtained:  $(CH<sub>3</sub>)<sub>2</sub>Al<sup>n</sup>Bu$  [1], AlEt<sub>a</sub> [2], Al<sup>*i*</sup>Bu<sub>3</sub> [3] and  $\beta$ -deuterio-Al<sup>*i*</sup>Bu<sub>3</sub> [4].

For the back reaction,  $k_{-a}$ , there are no direct measurements in gas phase available to date. Considerations of the equilibrium positions in systems of the type A lead to the conclusion, that the addition of olefins to Al-H-bonds is very fast indeed, with activation energies ranging between less than 5 to 7.6 kcal mol<sup>-1</sup> [1]-[4]. It is then evident, that a direct study of the addition rate under static reaction conditions is not possible.

A study of the competitive rates of addition should however reveal the controlling factors for the backreaction  $(-a)$  even though the absolute rate constants are inaccessible.

The kinetics of the addition of olefins to  $AIR<sub>3</sub>$  species  $(k<sub>b</sub>)$  in the gas phase have been studied for the systems  $\text{AIE}_3 + \text{C}_2\text{H}_4$  [5],  $\text{AIME}_3 + \text{C}_2\text{H}_4$  [6] and  $\text{AIME}_3 +$  $C_3H_6$  [7]. These data have been discussed [5]-[7] in terms of a relatively tight fourcentre asymmetric quadrupolar transition state. Differences in steric hindrance to the addition of the various olefins were found to overrule the extra stabilization resulting from the interaction of the alkyl substituents with the polar centres in the transition state, depicted below as (I).

 $\sim$   $\sim$ 

 $\Delta \sim 10^4$ 

$$
R \begin{array}{ccc}\n R & (a^{+}) & (c^{-}) & R_{x} \\
 R & A1 & - & - & C \\
 R & & & & \\
 R & &
$$

It was then interesting to check, whether the same principles are applicable for the addition of olefins to Al-H bonds, involving a transition state of the type 11.

### **Experimental Part**

*Appurufus* and Procedures. - The general procedures and the static reaction system used in these studics have been described earlier [3]. Two stainless-steel reaction vcsscls of 802 and 1750 m!, respectively, coated with "Teflon" were used. An experiment was started by injecting a liquid aliquot of  $\mathbf{A}^{i}$ Bu<sub>3</sub> into an evaporization chamber above the reaction vessel immediately followed by sweeping in an excess of an equimolar mixture of ethylene, propenc and 2-methyl-but-1-cne. In a few experiments (marked with an asterisk in Table 1), a prepressure of the olefin mixture was established in the reaction vessel prior to the addition of the aluminium trialkyl. An experiment was stopped, by condensing the reaction products at liquid nitrogen temperature, followed by quantitatively distilling the olefin fraction from the aluminium alkyl residue. Gases, non condensable at liquid nitrogen tempcrature mere continuouslp transferred and collected, but were always negligibly small.

The retained aluminium trialkyl fraction, containing the alkyl groups  $>A1-CH_2CH_3$ ,  $>$ Al--CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>,  $>$ Al--CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub> and  $>$ Al--CH<sub>2</sub>CH(CH<sub>3</sub>)CH<sub>2</sub>CH<sub>3</sub>, was hydrolyzed with excess water and the gaseous hydrolyses products (ethane, propane, isobutane, 2-methylbutane) were quantitatively transferred and measured in a gas buret and analyzed by gas-liquid partition chromatography (g.1.p.c.).

*Materials. - Ethylene* was of customary high purity and was provided by the Fawley-works of *Monsanlo* in England. Profiene and 2-methylbut-I-ene were obtained from *Fluka* Chemicals Corp., Ruchs, Switzcrland, and were found (after redistillation) to be 99.9% and 99.8% pure, respectively. Triisobutylaluminium was obtained from the *Schering* AG & Co in Bergkamen Germany.

 $\Lambda$ nalyses. - Gas chromatographic analyses were carried out on a  $F+M$  instrument using thermal conductivity detectors. Quantitative separation of the hydrolyses products and of the olefin mixtures was achieved with **a** 30 feet **li4** inch column of 20% BMEA on Chromosorb W, operated at  $0^{\circ}$  with a helium flow rate of 60 ml/min. The following relative response factors, reproducible within  $0.5\%$ , have been obtained, using a variety of standard samples of the various components: ethane 1.467, ethylene 1.533, propane 1.141, propene 1.225, butanes 0.989, butenes 1.000, 2-methylbutane 0,942, 2-methylbut-1-ene 0.852. In most experinicnts repetitive analyses were carried out and the observed product ratios usually agreed within a few percent, with an expected trend towards larger uncertainties with smaller overall conversions. A calibrated gas buret served for measuring the gases.

**Results.** - The relative rates for the competitive addition of ethylene, propylene and 2-methylbut-1-ene to diisobutylaluminium hydride ( $=$   $i$ Bu<sub>2</sub>AlH) were studied in the gas phase at temperatures from 375 to  $442^\circ$ K. The <sup>*i*</sup>Bu<sub>2</sub>AlH was produced *in situ* in the reaction vessel from  $Al^{i}Bu_{a}$  in presence of an excess of the olefin mixture.

$$
\mathrm{Al}^{i} \mathrm{Bu}_{3} \xrightarrow{\mathrm{slow}} \mathrm{HA}^{i} \mathrm{Bu}_{2} + i\text{-}C_{4}\mathrm{H}_{8} \tag{D}
$$

$$
C_2H_4 + HAHBu_2 \xleftarrow{\begin{array}{c}\n1 \\
\hline\n-1\n\end{array}} CH_3CH_2Al^tBu_2
$$
 (E)

$$
C_3H_6 + HAl^{i}Bu_2 \xrightarrow[--]{2} CH_3(CH_2)_2Al^{i}Bu_2
$$
 (F)

$$
CH_2C(CH_3)CH_2CH_3 + HAl^tBu_2 \xrightarrow{\begin{array}{c} 3 \\ -2 \end{array}} CH_3CH_2CH(CH_3)CH_2Al^tBu_2
$$
 (G)

 $k_1$ ,  $k_2$  and  $k_3$  are fast compared to  $k_4$ , and the concentrations of ethylene, propylene and 2-methylbut-1-ene are initially the same and at any time much larger than the amount of isobutene, set free in reaction D.

The results of the kinetic experiments are summarized in Table 1.

It is seen, that the ratio of [olefin]/[AliBu,] varies from *32* to 4 for *each* of the three olefins and was about 10 for most experiments. The conversion with respect

Table 1. *The Relative Rate of Addition of Ethylene, Propene and 2-Methyl-but-I-ene to Diisobutylaluminium Hydride* **a)** 

| $^{\circ}\mathrm{K}$ | Temp. Vessel Time<br>b) | min   | $[Al^{i}Bu_{3}]_{0}$<br>mM/l | Starting Materials <sup>e</sup> )        |       | $P_{tot}$ <sup>d</sup> ) | Hydrolysis<br>Products $e$ |                                   | $log k_a$<br>Con-<br>version <sup>f</sup> ) |                  |      |
|----------------------|-------------------------|-------|------------------------------|------------------------------------------|-------|--------------------------|----------------------------|-----------------------------------|---------------------------------------------|------------------|------|
|                      |                         |       |                              | $[Oleft]_0$<br>Mix-<br>ture <sup>g</sup> | mM/l  | Torr                     | $C_2H_6$<br>$C_3H_8$       | $C_2H_6$<br>$C_5H_{12}$           | in $\%$                                     | obs. calc. $h$ ) |      |
| 376.9                | $\overline{c}$          | 40    | 0.0898                       | $\mathbf{a}$                             | 8.86  | 211.8                    | 1.38                       | 0.80                              |                                             |                  |      |
| 377.1                | $\mathfrak{p}$          | 70    | 0.188                        | a                                        | 4.88  | 121.8                    | 1.32                       | 0.58                              | 6.22                                        | 4.82             | 4.20 |
| 377.2                | $\overline{c}$          | 81    | 0.137                        | $\mathbf{a}$                             | 5.20  | 127                      | 1.27                       | 0.61                              | 11.12                                       | 4.61             | 4.16 |
| 377.2                | $\overline{c}$          | 90    | 0.130                        | $\mathbf{a}$                             | 6.01  | 145.7                    | (1.17 <sup>k</sup> )       | (0.43 <sup>k</sup> )              | 9.72                                        | 4.72             | 4.20 |
| 377.7                | $\overline{2}$          | 20    | 0.172                        | $\mathbf{a}$                             | 5.75  | 142.3                    | 1.46                       | 0.94                              | 4.49                                        | 4.24             | 4.13 |
| 381.9                | $\overline{2}$          | 120   | 0.0867                       | $\mathbf{a}$                             | 2.81  | 70.5                     | 1.36                       | 0.80                              |                                             | -                | --   |
| 390.3                | $\mathbf{1}$            | 64    | 0.203                        | $b^{i}$                                  | 5.53  | 145                      | $(2.73^k)$                 | (5.63 <sup>k</sup> ) <sup>i</sup> | 44.1                                        | 3.82             | 3.64 |
| 394.2                | 1                       | 31    | 0.269                        | $\ddot{c}$                               | 11.73 | 295                      | 1.64                       | (0.990 <sup>k</sup> )             | 33.5                                        | 3.66             | 3.50 |
| 394.4                | 1                       | 20    | 0.189                        | $\mathbf c$                              | 4.91  | 127                      | 1.57                       | 0.903                             | 20                                          | 3.73             | 3.50 |
| 395.3                | 1                       | 30    | 0.250                        | $\mathbf c$                              | 7.05  | 184                      | 1.51                       | $1.03k$ )                         | 22.1                                        | 3.86             | 3.46 |
| 397.3                | $\mathbf{1}$            | 60    | 0.37                         | $\mathbf c$                              | 15.22 | 366                      | 1.51                       | $1.64k$ )                         | 64.3                                        | 3.54             | 3.38 |
| 397.5                | $\mathbf{1}$            | 45    | 0.45                         | $\mathbf c$                              | 5.99  | 167                      | 1.45                       | $1.31k$ )                         | 43.7                                        | 3.67             | 3.37 |
| 433.8                | $\overline{2}$          | 3.2   | 0.299                        | $C_2H_4$                                 | 16.90 | 470.8                    | -                          |                                   | 54.4                                        | 2.12             | 2.15 |
| 434.9                | $\overline{2}$          | 0.83  | 0.213                        | $\mathbf{a}$                             | 12.15 | 340.5                    | 1.46                       | 1.17                              | 22.7                                        | 2.29             | 2.11 |
| 435.4                | $\overline{2}$          | 0.933 | 0.336                        | d                                        | 7.13  | 207.3                    | 1.61                       | 1.16                              | 19.64                                       | 2.41             | 2.10 |
| 435.4                | $\overline{2}$          | 2.0   | 0.261                        | d                                        | 6.84  | 199.4                    | 1.70                       | 1.45 <sup>k</sup>                 | 24.67                                       | 2.63             | 2.10 |
| 436.2                | $\overline{a}$          | 1.16  | 0.383                        | a                                        | 10.95 | 311.4                    | 1.43                       | 1.22                              | 23.24                                       | 2.42             | 2.08 |
| 436.4                | $\overline{2}$          | 3.45  | 0.263                        | $\mathbf e$                              | 10.86 | 309.1                    | 1.63                       | $(2.36^k)$                        | 50.63                                       | 2.48             | 2.07 |
| 438.9                | $2*$                    | 3.516 | 0.197                        | e                                        | 7.07  | 204                      | 1.73                       | (2.90 <sup>k</sup> )              | 34                                          | 2.71             | 2.00 |
| 442                  | $2*$                    | 7.0   | 0.270                        | $\mathbf e$                              | 8.28  | 242                      | (2.12 <sup>k</sup> )       | (7.57 <sup>k</sup> )              | 38.1                                        | 2.94             | 1.86 |
| 475                  | $\overline{2}$          | 2.16  | 0.768                        | d                                        | 8.73  | 288.2                    | 9.14 <sup>k</sup>          | (5.9 <sup>k</sup> )               | 36.6                                        | 2.46             | 0.96 |
| 474.1                | $2*$                    | 3.63  | 0.188                        | d                                        | 8.10  | 249.9                    | $10.7k$ )                  | $95k$ )                           | 64.5                                        | 2.32             | 0.98 |

<sup>b</sup>) 1 and 2 refer to "Teflon" coated reaction vessels of 1750 and 802 ml, respectively. In the experiments, marked with an asterisk, a prepressure  $(-50$  Torr) of the olefin mixture was established in thc rcaction vessel prior to the addition of the aluminium alkyls.

Starting concentrations derived from the amount of hydrolysis products  $(Al^{i}Bu_{3})$  and initial  $e$ ) pressure measurements (olefin).

 $d_{\parallel}$ Total initial pressure.

Consisting of ethane, propanc, isobutane and 2-methylpentane.  $e$ 

Apparent conversion based on the relative amounts of hydrolysis products and relating to  $f$ "total" conversion, i.e. the sum of the alkyl-groups.

Five independently prepared equimolar mixtures of ethylene, propylene and 2-methylbut-l $g$ ) cnc have been used. The g.1.p.c. analysis of the mixtures showed ratios deviating by no more than two percent from 1.00.

 $h_{\parallel}$ On the basis of earlier work on the system  $Al^{i}Bu_{3} + C_{2}H_{4}$ , Ref. [3].

i). 2-methylhex-1-ene used instead of 2-methyl-pent-1-ene, to the total of the aluminium-alkyl groups present, ranges from 1.5 to 21 percent for *each* of the three olefins.

Based on the assumption, that the backreactions  $-1$ ,  $-2$  and  $-3$  can be neglected, the relative amounts of hydrolysis products would directly relate to the relative rates of addition,  $k_1/k_2 = [C_2H_6]/[C_3H_8]$  and  $k_1/k_3 = [C_2H_6]/[C_5H_{12}]$ . As was to be expected from our earlier work and the data in Table 2 show, this assumption is strictly valid only for relatively mild reaction conditions, i.e. low conversions and temperatures. The rate of the backreactions, i.e. the elimination of olefins from the trialkylaluminiurn species decreases in the series  $R_2A^{\dagger}Bu > R_2A^{\dagger}Pr > R_2A^{\dagger}Et$ . The corresponding kinetic parameters obtained from independent studies are summarized in Table *2.* 

| $Combound$ <sup>a</sup> ) | $log(A^b)$   | $log(A^{\ast b})$ | $E_{a}$ (kcal mol <sup>-1</sup> ) | Ref.                         |
|---------------------------|--------------|-------------------|-----------------------------------|------------------------------|
| $Al^{i}Bu_{3}$            | $11.2 + 0.3$ | $11.2 + 0.3$      | $26.6 + 0.7$                      | $\lceil 3 \rceil$            |
| $(Me)_{2}Al^{n}Bu$        | $10.9 + 0.2$ | $10.6 + 0.2$      | $27.8 + 0.4$                      | $\left\lceil 1 \right\rceil$ |
| $\text{AIEt}_{2}$         | $10.9 + 0.1$ | $10.5 + 0.1$      | $30.1 + 0.3$                      | [2]                          |
| $Ga^{i}Bu_{i}$            | $11.6 + 0.3$ | $11.6 + 0.3$      | $30.4 + 0.6$                      | [8]                          |
| BiBu <sub>3</sub>         | $11.8 + 0.5$ | $11.8 + 0.5$      | $30.4 + 1.0$                      | [9]                          |

Table 2. *Activation Parameters for Olefin Eliminations frona Group 3 Metal Alkyls in the Gas Phase:*   $M(alkyl)_3 \rightarrow HM(alkyl)_2+olefin$ 

\*) Me, Et and Bu stand for methyl-, ethyl- and butyl groups, nand *i* for normal and is0 structures, respectively.

**b) A** in units of srl and **A\*** rcpresents path degeneracy corrected preexponential factors.

Based on the data listed in Table I1 it can be concluded, that aluminium-propyl and aluminium-ethyl groups should be stable at the reaction conditions used. This is indeed the case. The ratio  $\lceil C_2H_6\rceil/\lceil C_3H_8\rceil$  observed in the hydrolysis products, i.e.  $k_1/k_2$  is essentially constant at a given temperature. Only with very large conversions and at the highest temperature, consistently larger ratios of  $k_1/k_2$  are obtained, indicating a significant contribution from the backreaction  $-2$ .

Experiments were also carried out at  $475\,^{\circ}\text{K}$ , a temperature which is clearly above the limit of the temperature range feasible for kinetic studies of this type on this system. The results of two of these experiments are incorporated in Table 1. The data show, that the backreactions  $-2$  and  $-3$  are so fast, that the system is kinetically ill defined, approaching an equilibrium state in which the thermally most stable aluminium-ethyl groups eventually persist to the practical exclusion of isobutyl-, propyl- and 2-methylbutyl groups.

The temperature dependence of the  $k_1/k_2$  ratios is best represented by  $\log (k_1/k_2) =$ 0.6-0.8 $\Theta$ , where  $\Theta$  equals 2.303 RT in kcal mol<sup>-1</sup>. Taking the limiting extremes in the *Arrhenius* plot the data could also be represented by  $\log(k_1/k_2) = 0.2{\text -}0.0/\Theta$  or 1.0- $1.6/\Theta$ .

Considering the experimental error limits and the fact that the feasible temperature range was limited to about *60"* the uncertainties are of the expected order of magnitude.

In contrast to the ratios  $k_1/k_2$ , the data for  $k_1/k_3$  show a pronounced dependence on the overall conversions reached in the system. At the lowest temperature block of  $\sim$ 377°K the ratio  $\lceil C_2 H_6 \rceil / \lceil C_5 H_{12} \rceil = k_1 / k_3$  appears to be constant within experimental error limits and an average value of 0.75  $\pm$  0.15 can be derived. At the 395°K temperature block the values increase consistently with increasing conversion, due to the back-elimination of 2-methylbut-1-ene  $(= k_{-3})$  from the corresponding aluminiumisopentyl group. A value of 0.9 can be extrapolated from these data. Despite the very short reaction times used for temperatures of about 438° the values of  $k_1/k_3$ increase steadily with reaction time, i.e. conversion. Nevertheless it is apparent, that at these temperatures  $k_1/k_3$  cannot be very different from 1.10.

Based on these data, the following temperature dependence of  $k_1/k_3$  is derived:

$$
\log(k_1/k_3) = 1.2 - 2.2/\Theta
$$

with the limiting values

$$
log(k_1/k_3) = 0.7 - 1.2/\Theta
$$
 and  $= 1.9 - 3.7/\Theta$ .

Equations (1) and (2) combined yield for  $k_2/k_3$ :

$$
\log(k_2/k_3) = 0.6 - 1.4/\Theta.
$$
 (3)

In the last two colums of Table 1 rate constants  $(k_a)$  for the elimination of isobutene from  $Al^{t}Bu_{3}$  are given. Considering that step (a) is by far the slowest step in the overall reaction system it should be possible to calculate rate constants for  $k_a$ from the total conversions observed, provided the backreaction  $(-a)$  can be neglected. For small conversions this should be the case. Data for  $k_a$  resulting from this work are listed in the second to last column in Table 1, and are compared with values calculated on the basis of our earlier study on the system  $Al^{i}Bu_{3} + ethylene [3]$ .

**Discussion.** – Activation energies (in kcal mol<sup>-1</sup>) for adding ethylene  $(< 5$ ), propene (5.2) and 2-methylbut-1-ene (6.1) to  $R<sub>2</sub>A1-H$  bonds in the gas phase can be estimated  $[1]$  on the basis of the equilibrium positions in reactions  $(E)$ ,  $(F)$  and  $(G)$ (derived from thermochemical data) when combined with the observed rate data for the backreaction. The competitive rate studies reported here substantiate essentially the assumption of only small differences in activation parameters between the olefins. The maximum ratio in relative rates of addition for any pair of the three olefins was observed to be about 1.8.

In view of the overall mechanism proposed for these reactions [lj-[7] it is particularly interesting to note, that in contrast to the addition to  $R<sub>2</sub>Al-C$  bonds, 2-methylbut-1-ene adds faster to  $H Al^{t}Bu_{2}$  than propene and, below 120°, even faster than ethylene.

This is perfectly in line with expectation based on the concept of a relatively tight, quadrupolar, 4-centre transition state involved in these reactions [7], whereby activation energy and entropy work in a compensating manner.

The analysis of the rate expressions (l), (2) and *(3)* suggests essentially incremental behaviour of both, activation energy and entropy with increasing alkyl substitution on the olefin moiety. The A-factor is lowered by each additional alkyl group, bonded to the 2-carbon atom in 1-olefins, by about  $10^{0.6}$ , which is partly due to the increased steric hindrance in the tight transition state. In compensation of this effect the activation energy is lowered with each alkyl group by about  $1 \text{ kcal mol}^{-1}$ , resulting from a stabilization of the positively induced charge on the olefinic 2-carbon atom in the transition state (compare equation B).

In the detailed analysis of the data we have so far neglected any effect of path degeneracy onto the relative rates of reaction. Depending on the detailed reaction mechanism involved, a path degeneracy of 2, favoring ethylene compared to propene or 2-methylbut-1-ene should be taken into account. For the postulated tight quadrupolar 4-centre transition state the intrinsically comparable rate data would then yield

$$
\log(k_1'/k_2) = 0.3 - 0.8/\Theta
$$
 (5)

$$
\log (k_1'k_3) = 0.9 - 2.2/\Theta
$$
 (6)

It is reasonable that the entropical difference between the ethylene and propene addition (1.4 cal/grade/mol) is only about half that observed between propene and 2-methylbut-1-ene (2.8 cal/grade/mol). These results are perfectly in line with observations from the addition of olefins to  $R<sub>2</sub>Al-C$  bonds [5]-[7]. In the case of  $Al(Me)<sub>3</sub>$ the relative rate of ethylene versus propene addition was observed *[6] [7],* to be

$$
\log(k_{\text{ethylene}}/k_{\text{propene}}) = 1.4 - 2.15/\Theta \tag{4}
$$

whereby at the reaction temperatures used, the entropy term always overruled the opposing energy effect of alkyl substituents.

As was to be expected, the additional loss of entropy when substituted olefins are added to  $R<sub>2</sub>$ Al-H bonds is with 2.5 cal/grade/mol per methyl group much smaller than that observed for addition to  $R_2$ Al–CH<sub>a</sub> bonds  $({\sim}7 \text{ cal/grade/mol}).$  Even larger differences would have to be expected and are indeed apparent for the addition of olefins to larger  $R_{2}$ Al-alkyl groups.

The results of this work then substantiate the assumption of relatively tight quadrupolar 4-centre transition states operative in additions of olefins to both  $R<sub>2</sub>Al-H$ and  $R<sub>2</sub>Al-C$  bonds [7].

There is no apparent reason to assume the formation of  $[R_2A]H \times$ olefin]-complexes.  $[A]R_{\rm a} \times \text{defin}$ -complexes are then probably not rate determining intermediates in the addition of olefins to  $AlR<sub>a</sub>$  as has been suggested [6] earlier.

In conclusion it is recalled, that in liquid phase  $R_2A$ iH exists predominantly in the trimeric form. The rate of addition of olefins to dialkylhydride in liquid phase has been reported to follow kinetics with between 0.37 [10] and 0.5 [11] order dependence in  $[R_2A]$  and first order dependence in [olefin] [10] [11]. A mechanism involving the rate determining addition of the olefin only to the monomeric form of the hydride has been suggested [10] [11] in perfect agreement with our concept of a quadrupolar 4-centre transition state. Also in line with the gas phase data, activation energies of between 3 and 10 kcal mol<sup>-1</sup> for the addition in liquid phase  $(k_q)$  can be estimated from the data in references 10-12. The reaction system can essentially be visualized as shown below:

A CHIMICA ACTA - Vol. 55, Fasc. 5 (1972) - Nr. 148  
\n
$$
[R_2A1H]_3 \xrightarrow[n]{m} R_2A1H + [R_2A1H]_2
$$
\n
$$
[R_2A1H]_2 \xrightarrow[n]{0} 2R_2A1H
$$
\n
$$
R_2A1H + \text{olefin} \xrightarrow[q]{\text{slow}} R_2A1R'
$$
\n
$$
R_2A1H + \text{olefin} \xrightarrow[q]{\text{slow}} R_2A1R'
$$
\n
$$
[(-q) \text{ can be neglected and } k_m, k_n, k_n \in \mathbb{Z}
$$

whereby the backreaction  $(-q)$  can be neglected and  $k_m$ ,  $k_n$ ,  $k_o$  and  $k_p \gg k_a$ .

I thank Dr. *A. T. Cocks* for stimulating discussions.

#### BIBLIOGRAPHY

[1] *K. W. Egger* & *A. T. Cocks,* Trans. Faraday SOC. *67,* 2629 (1971).

121 *A.* T. *Cocks* & *K. W. Egger,* J. chcm. SOC. Faraday I, *68,* 423 (1972).

[3] *K. W. Egger, J. Amer. chem. Soc. 91, 2876 (1969).* 

[4] *K. W. Egger,* Int. J. chem. Kinetics *I,* 459 (1969).

[5] *K.* **Mi.** *Egger,* Trans. Faraday Soc. *67,* 2638 (1971).

[6] *K. W. Egger& A. T. Cocks,* J. Amer. chem. SOC. 94, 1810 (1972).

[7] *K. W. Egger, J. chem. Soc. Faraday I, 68, 1017 (1972).* 

[8] *K. W. Egger, J. chem. Soc. A, 3603 (1971).* 

 $\lambda$ 

[9]' A. T. Cocks & K. W. Egger, J. chem. Soc. A, 3606 (1971).

1101 *J, J. Eisch* & *S. G. Rhee,* J. Organometal. Chem. 37, C 49 (1971).

-111 *J. N. Hay,* G. *R. Jones* & *J. C. Robb,* J. Organometal. Chem. 75, 295 (1968).

1121 *F. Asinger, B. Fell* & *F. Theissen,* Chem. Ber. *100,* 837 (1967).

# **149. Untersuchungen der Symmetrieverhaltnisse in aquatorial**  koordinierten 2:1-Arylazo-Co<sup>III</sup>-Komplexen mit Hilfe **der Protonenresonanz**

## von **G. Schetty** und **E. Steiner**

Zentralc Forschung der *CIBA-GEIGY AG,* Base1

Herrn Prof. Dr. *E. Ziegler*, Universität Graz, zum 60. Geburtstag gewidmet

## **(3.** 111. **72)**

*Summary.* The magnetic equivalence of ligand protons was examined with aid of NMR. spectroscopy for a large number of 1 **:2** CoIII-complexes of tridentated azo dyestuffs forming a representative cross section of the whole class of substances. It was established by this investigation that ligands with a moderately polarised azo group have a particular inclination to form asymmetrical complexes in which the protons of the two ligands are not magnetically equivalent. On the other hand, ligands having a non-polarised or a strongly polarised azo group tend to form symmetrical complexes. In three cases both symmetrical and asymmetrical complexes were isolated. As in previous investigations [I], up to *a* total of 5 complexes were again observed, which indicates at least two causes governing the symmetry conditions. The phenomena described here could be explained with an alternative coordination of the two azo nitrogen atoms. On the basis of the NMR. results, however, preference is given to an exchange of the azo with the hydrazone form.